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Optimal stomatal behaviour around the world
Yan-Shih Lin et al.†

Stomatal conductance (gs) is a key land-surface attribute as
it links transpiration, the dominant component of global land
evapotranspiration, and photosynthesis, the driving force of
the global carbon cycle. Despite the pivotal role of gs in
predictions of global water and carbon cycle changes, a global-
scale database and an associated globally applicable model
of gs that allow predictions of stomatal behaviour are lacking.
Here, we present a database of globally distributed gs obtained
in the field for a wide range of plant functional types (PFTs)
and biomes. We find that stomatal behaviour di�ers among
PFTs according to their marginal carbon cost of water use,
as predicted by the theory underpinning the optimal stomatal
model1 and the leaf and wood economics spectrum2,3. We also
demonstrate a global relationship with climate. These findings
provide a robust theoretical framework for understanding and
predicting the behaviour of gs across biomes and across PFTs
that can be applied to regional, continental and global-scale
modelling of ecosystem productivity, energy balance and
ecohydrological processes in a future changing climate.

Earth system models (ESMs), which integrate biogeochemical
and biogeophysical land-surface processes with physical climate
models, have been widely used to demonstrate the importance
of land-surface processes in determining climate and to highlight
the large uncertainties in quantifying land-surface processes4–6.
Within the biogeophysical components of land-surface processes,
gs plays a pivotal role because it is a key feedback route for
carbon and water exchange between the atmosphere and terrestrial
vegetation. Stomata are small pores on leaves whose aperture is
actively regulated by plants in response to multiple abiotic and
biotic factors, and their conductance is a major determinant of
global land evapotranspiration and global water and carbon cycles.
Therefore, our ability to model the global carbon and water cycles
under a future changing climate depends on our ability to predict
gs globally7. Many ESMs at present use an empirical stomatal model
to predict gs and, in the absence of information, assume identical
parameter values for all non-water-stressed C3 and C4 vegetation.
For example, the LPJmodel4 assumes a constant ratio of intercellular
to ambient CO2 concentration (Ci:Ca) of 0.8 for all C3 vegetation
and 0.4 for all C4 vegetation. The CABLE model8 uses the empirical
stomatal model of Leuning9 with two sets of parameter values,
one for all C3 vegetation and one for all C4 vegetation. The CLM
4.0 model10 uses the empirical stomatal model of Ball et al.11 with
three sets of parameter values, one for C4, one for needle-leaf
trees, and a third for all other C3 vegetation. Although there have
been previous synthesis studies on plant stomatal conductance and
related traits3,7,12,13, we lack a global-scale database and an associated
globally applicable model of gs that allows predictions of stomatal
behaviour among PFTs and across climatic gradients.

For this study, we compiled a unique global database of field
measurements of gs and photosynthesis suitable for estimating
model parameters. We employed a model of optimal stomatal
conductance14 to develop hypotheses for how stomatal behaviour
should vary with environmental factors and with plant traits
associated with hydraulic function. The optimization premise
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Figure 1 | Climatic space covered by the Stomatal Behaviour Synthesis
Database, shown as mean temperature during the period with daily mean
temperatures above 0 ◦C and moisture index. Coloured circles represent
climatic space for the database, with di�erent colours indicating di�erent
plant functional types. Grey hexagons represent global climatic space for
which vegetation is present. The global climatic space data were binned by
every 1 ◦C for temperatures above 0 ◦C (T̄) and every 0.25 for the moisture
index (MI). The grey scale bar indicates the number of 0.5×0.5 degree
pixels for a given binned T̄ and MI combination.

underlying this model1 is that stomata are regulated so as to
maximize photosynthesis minus the carbon cost of transpiration,
A−λE, where λ (mol CO2 mol−1 H2O) is the carbon cost per
unit water used by the plant. Intuitively, λ represents the plant’s
exchange rate between carbon uptake and water use: a high value
of λ indicates that transpiration is costly in carbon terms, meaning
that the plant is likely to be conservative in its use of water.
From this premise, the model predicts that gs should be related
to photosynthesis, vapour pressure deficit and atmospheric CO2
concentration, with a single slope parameter, g1, that is inversely
proportional to

√
λ (refs 1,14,15). The slope parameter g1 is readily

estimated from experimental data (Methods) and can be used as an
index of λ, where small values of g1 indicate a high λ. Themodel also
predicts that, under constant environmental conditions, g1 should be
inversely related to plant water-use efficiency14.

We hypothesized that variation in λ, and therefore in g1, values
among climate zones and PFTs can be predicted from plant carbon–
water relations. Specifically, we hypothesized that:

(1) g1 values among PFTs should vary according to the cost
of stemwood construction per unit water transport, such that C3
herbaceous species should have the largest g1 (that is, be least
water-use efficient), followed by angiosperm trees and gymnosperm
trees. We predicted that angiosperm trees would have larger g1
than gymnosperms due to their higher sapwood permeability,
which yields a lower carbon cost of construction per unit water
transported. Herbaceous C4 species form a special case. Due to the
different shape of the photosynthesis—gs response in C4 plants, the
optimal stomatal theory predicts that, for the same λ value, g1 should

†A full list of authors and a�liations appears at the end of the paper.
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be approximately one-fifth of what it would be for C3 species (see
Supplementary Note). We therefore predicted that C4 plants would
have the lowest g1 and be the most water-use efficient PFT.

(2) For trees, λ should increase with wood density, due to the
higher cost of wood construction16 per unit water transported.
Therefore, within both angiosperms and gymnosperms, species
with larger wood densities should lead to higher carbon cost per unit
water transport (smaller values of g1).

(3) Low soil water availability should increaseλ, so plants adapted
to dry environments should have larger λ and lower g1.

(4) g1 values should increase with growth temperature for two
reasons. First, in the derivation of the optimal stomatal model14, g1
is approximately proportional to 0∗ (the CO2 compensation point
in absence of photorespiration). As 0∗ is exponentially dependent
on temperature17, g1 should increase with temperature. Second, the
viscosity of water decreases with increasing temperature, making it
less costly to transport water, leading to an increased g1 (ref. 15).

To test these hypotheses, we collated a globally distributed
database of gs and photosynthesis, including 56 field studies
covering a wide range of biomes from Arctic tundra, boreal and
temperate forest to tropical rainforest (Supplementary Table 2). We
estimated the model coefficient, g1, from observations of leaf-level
gas exchange (gs and rates of net photosynthesis, see Methods)
and environmental drivers (vapour pressure deficit and ambient
CO2 concentration). Next, we correlated estimates of g1 with two
climatic variables: T̄ , which is themean temperature over the period
when daily mean temperatures are above 0 ◦C, and a moisture
index (MI), which is calculated as the ratio of mean annual

Table 1 | Analysis of variance table for g1 as a function of MI
and T̄.

Model

Variables no. d.f. dend.f. F-value p-value Marginal R2

Intercept 1 97 76.97 <0.001 0.35
MI 1 97 13.38 0.004 Conditional R2

T̄ 1 97 7.18 0.009 0.89
MI×T̄ 1 97 2.61 0.110
no. d.f.: degrees of freedom in the numerator; den d.f.: degrees of freedom in the denominator.

precipitation to the equilibrium evapotranspiration. Both T̄ and
MI were derived from observed long-term meteorological data as
proxies of the temperature and water availability that are relevant to
plant physiological functions for each site18. Our database included
a range of T̄ from 2.7 to 29.7 ◦C and a range of MI from 0.17 to
3.26, representing the majority of the climatic space for vegetation-
covered land surfaces (Fig. 1). We then tested how g1 varies with MI
and T̄ across PFTs and biomes.

We found a clear pattern of g1 variation among different PFTs,
with evergreen savannah trees (all angiosperms) having the largest
g1, followed by C3 crops and grasses, angiosperm trees (other
than evergreen savannah trees), gymnosperm trees, and C4 grasses
(Supplementary Table 3 and Fig. 2). For angiosperm trees, g1 was
negatively correlated with wood density, although we did not find
a correlation for gymnosperm species (Fig. 3). Across the entire
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Figure 2 | Mean g1 values for plant functional types defined by di�erent classification schemes. Each bar represents the mean values± 1SE of g1 from the
stomatal model fitted using a nonlinear mixed-e�ects model assuming species as a random e�ect. The sample sizes (n) are the number of measurements.
In the case of diurnal measurements, measurements might be done on the same leaf but under di�erent environmental conditions. Species number (spp)
indicates the number of the species in each group. Panels b–d include C3 species data only.
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Figure 3 | Relationship between g1 and wood density for angiosperm and
gymnosperm trees. Savannah tree species (all of which were angiosperms)
are indicated separately. Each data point represents mean± 1SE of g1 for an
individual species fitted with a nonlinear regression model. A linear
regression line was fitted only for angiosperm trees due to the lack of a
significant linear relationship for gymnosperm trees. The fitted linear
regression relationship between g1 and wood density for angiosperm trees
is: g1=−3.97∗WD+6.53 (P=0.0008, R2

=0.21). Wood density data were
obtained from Global Wood Density Database2,29 and are available for 47
species in the Stomatal Behaviour Synthesis Database. The wood density
database is a collection of published data based on actual measurements.

data set, g1 significantly increased with T̄ and MI. When evaluated
as a bivariate relationship, we observed that there was a weak
interactive effect of temperature and moisture availability on g1

(Table 1; p=0.11): in wet environments, g1 was largest at sites
with high T̄ , but it varied with T̄ to a smaller degree across dry
environments (Table 1 and Fig. 4).

Our results supported most of our hypotheses for how g1 should
vary among PFTs (hypothesis 1). We predicted that variation in
g1 among PFTs would reflect differences in the carbon cost of
water use for different PFTs, which in turn is a general result of
different strategies for resource allocation3,15. Long-lifespan PFTs,
such as gymnosperm trees, must invest more in building support
and defence structures relative to short-lifespan PFTs, such as
grasses, so that they can survive many years of biotic and abiotic
stress. On the basis of this higher construction cost, we predicted
a more conservative water-use strategy in trees (lower g1) than
in C3 grasses (higher g1), and this was observed in the database.
However, evergreen savannah trees formed an exception, with a
surprisingly large g1 relative to expectations based on wood density
and biome MI. The large g1 in the evergreen savannah trees may
be related to the fact that these species have several hydraulic
functional traits that allow them to have a less conservative water-
use strategy. These hydraulic functional traits include: deep roots to
access groundwater, large sapwood area to leaf area ratios19, and dry-
season declines in total leaf area to balance increased atmospheric
aridity20. In addition, there may be seasonal shifts in λ from wet to
dry season, reflecting changes in the relative availability of water.
Seasonal measurements suggest dry-season g1 is lower than wet-
season g1 (Supplementary Fig. 3). This special case of evergreen
savannah trees is worthy of further investigation.

We found a significant negative relationship between g1 and
wood density among angiosperm trees (Fig. 3; excluding savannah
angiosperm trees) which supported hypothesis 2. A larger wood
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density is highly correlated with other hydraulic traits that are
advantageous for plants to avoid hydraulic failure and to sustain
more negative sapwood water pressures during periods of soil water
deficit21. Such an investment in wood density comes at the expense
of a reduced capacity for stem water storage, reduced sapwood
conductivity and an increased carbon cost of construction per unit
volume22–24, and thus was expected to lead to a more conservative
water-use strategy, as we found for angiosperms. However, we did
not find such a relationship among gymnosperm trees. This lack of
correlation may be due to the limited variability in wood density in
gymnosperms. There are significant differences in the anatomical
structure of sapwood water transport between angiosperms and
gymnosperms. The majority of angiosperm trees have evolved to
separate the water transport structure (that is, vessels) from the
mechanical support structure, while gymnosperm trees do not have
such a functional differentiation, as tracheids are used for bothwater
transport and mechanical support2,21. Therefore, wood density is a
good proxy for quantifying the trade-offs between transport and
support investments for angiosperm trees, but not for gymnosperm
trees2. The distinct differences in water-use strategy between
angiosperm trees and gymnosperm trees (Fig. 2) is consistent
with a recent observation that angiosperms maintain a much
smaller hydraulic safetymargin than gymnosperms25; consequently,
angiosperms allow some loss of hydraulic conductivity—a risk-
tolerant strategy—while gymnosperms minimize this loss. This
evolutionary development confers an advantage to angiosperm trees
by allowing them to use water in a less conservative way, thereby
increasing their carbon gain relative to gymnosperm trees.

Our results supported our hypotheses regarding g1 variation
with soil moisture stress and temperature (hypotheses 3 and 4)
and demonstrated different degrees of responses in g1 between MI
and T̄ . These differing responses demonstrate plant coordination
of resource allocation strategies along two climatic gradients, a
relationship that has been mostly ignored in many ESMs at present
(Fig. 4). Such relationships are not surprising as the two climatic
factors affect λ and0∗ in different directions betweenwarm/dry and
warm/wet environments: in a warm/wet environment, 0∗ increases
because of higher temperature and λ decreases because of lower
moisture stress, leading to higher g1. However, in a warm/dry
environment, higher temperature still promotes the increase of 0∗,
but moisture stress also increases λ, which means g1 would increase
to a smaller degree than in a warm/wet environment. A further
explanation is that plants growing in dry environments are likely
to be more hydraulically constrained by the need to avoid xylem
embolism than those growing in wet environments, and thus there
should be less variation in g1 with other factors.

Our study demonstrates a robust, process-based framework that
can be applied at different spatial scales for understanding and
predicting the behaviour of stomatal conductance across biomes
and across PFTs. We analysed a global stomatal behaviour data
set along two major climatic axes, providing a step forward in our
understanding of stomatal behaviour in different environments.
Our findings will allow the ESM community to move on from
using empirical stomatal models with tuned parameters4,8,10 to
using a more robust, theory-derived optimal stomatal model
with meaningful parameters. In addition, we provide a valuable
stomatal behaviour database that can be used to parameterize gs
among PFTs and can be applied directly within ESMs to simulate
ecosystem productivity and ecohydrological responses to future
climate scenarios across regional, continental and global scales.

Methods
Source of data. We synthesized published and unpublished leaf-level gas
exchange data for a wide range of PFTs and biomes (Supplementary Table 2). In
all cases, measurements were made using leaf cuvette chambers that measure
water vapour and CO2 fluxes from leaves. We used only data sets including

instantaneous measurements under ambient field conditions. We did not include
any data sets from standard response curve measurements, such as CO2 response
curves or light response curves. Our database covers 314 species from 56
experimental sites around the world, with 17 sites from Australasia, 15 sites from
Europe, 14 sites from North America, six sites from Asia, three sites from South
America and one site from Africa. Site latitudes range from 42.9◦ S to 72.3◦ N,
although the majority of the sites are within the temperate zone (n=35; latitude
range between 23.5◦ and 55◦ and between −23.5◦ and −55◦), followed by
tropical zone (n=14; latitude range between −23.5◦ and 23.5◦), boreal zone
(n=6; latitude range between 55◦ and 66.5◦) and Arctic zone (n=1; latitude
range above 66.5◦). The whole database is publicly available and can be
downloaded from the data repository (http://figshare.com/articles/Optimal_
stomatal_behaviour_around_the_world/1304289).

We derived MI and T̄ from Climate Research Unit climatology data
(CRU CL1.0; ref. 26) from 1960 to 1990 with a modified version of the STASH
model27 at a grid resolution of 0.5◦. In this derivation, T̄ was calculated as the
ratio of the annual sum of linear interpolated daily temperatures above 0 ◦C
(growing degree days) to the length of this period; MI was calculated as the ratio
of mean annual precipitation to the equilibrium evapotranspiration (Eeq). We
estimated Eeq from monthly mean temperature and net radiation (calculated from
monthly mean percentage of cloud cover)27. The Sea-WiFS fAPAR (fraction
absorbed photosynthetically active radiation) product28 was used to determine
areas with green vegetation cover at a grid resolution of 0.5◦, as shown in Fig. 1.
The wood density data were obtained from the Global Wood Density Database2,29.

Data analysis. We used leaf-level gas exchange data sets which were collected
with standard portable gas exchange instruments. We used data measured at a
photosynthetic photon flux density (PPFD) >0 µmolm−2 s−1, and only data
collected from the top third of the canopy. In all cases, species were grown under
ambient environmental conditions and were not subjected to any treatments,
such as elevated CO2, temperature, or drought treatments. We employed the
optimal stomatal model14:

gs=1.6
(
1+

g1
√
D

)
A
Ca

(1)

where D is vapour pressure deficit (kPa), A is net photosynthesis rate
(µmolm−2 s−1), Ca is CO2 concentration at the leaf surface (ppm), and g1 is the
model coefficient. We used a nonlinear mixed-effect model to estimate the model
slope coefficient, g1, for each group separately for various classification schemes,
as shown in Fig. 2. In this model, individual species were assumed to be the
random effect to account for the differences in the g1 slope among species within
the same group.

In the original derivation of the optimal stomatal model14, an intercept term
g0 was added to equation (1) to ensure correct behaviour of Ci as A approaches
zero, following Leuning9. This term is often thought of as representing the
minimum, or cuticular stomatal conductance. Here, we did not fit this term for
several reasons. First, fitted values of g0 and g1 tend to be correlated, meaning
that it is not possible to compare values of g1 across data sets when g0 has also
been fitted. Second, it is not clear that adding an intercept to equation (1) is the
correct way to handle a minimum stomatal conductance, because this affects all
predictions of gs, not just those where A is close to zero. It may be more
appropriate to include the g0 term as a minimum bound to equation (1).

To test how g1 varies with climatic variables (that is, MI and T̄ ), we first
estimated g1 for each species using a nonlinear regression model (Supplementary
Table 4). We then used a weighted linear mixed-effect model to test the
relationship between g1, MI and T̄ . We fitted the model as:

log(g1)∼MI+ T̄+MI× T̄

using the inverse of the standard error (SE) of g1 as the weighting scale to account
for the uncertainty of g1 fitting and assuming PFTs as the random effect to
account for the differences in intercept among PFTs. To evaluate the goodness of
fit of the linear mixed-effect models, we calculated both the marginal R2 to
quantify the proportion of variance explained by the fixed factors alone and the
conditional R2 to quantify the proportion of variance explained by both the fixed
and random factors26. The relationship between g1 and wood density was tested
with a simple linear regression model. All model estimations and statistical
analyses were performed with R 3.1.0 (refs 30–32).
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